Pearson Edexcel

Mark Scheme (Results)

Summer 2019

Pearson Edexcel International GCSE in Physics (4PH1) Paper 1PR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019
Publications Code 4PH1_1PR_msc_20190822
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
1 (a) (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
arrow originating at object \(A\) and directed towards the star by eye; arrow labelled gravitational (force); \\
D - (a planet); \\
A is incorrect because comets have comets have elli B is incorrect because galaxies do not orbit anything C is incorrect because moons orbit planets \\
A - (a comet); \\
B is incorrect because galaxies do not orbit anything \\
C is incorrect because moons orbit planets \\
D is incorrect because planets have circular orbits
\end{tabular} \& \begin{tabular}{l}
allow weight, gravitational force, pull or force of gravity condone gravity \\
ical orbits
\end{tabular} \& 2

1
1
1

\hline (b) \& galaxy; \& allow named galaxy e.g. Andromeda, Milky Way ignore universe \& 1

\hline (c) \& | spectral class B to have any temperature higher than 5600 K ; |
| :--- |
| spectral class M to have any temperature lower than 5600 K ; | \& \& 2

\hline (d) \& star becomes a red (super) giant; (then) a supernova; (leaving) a neutron star / black hole; \& | allow "supergiant" allow pulsar |
| :--- |
| Max 2 for incorrect order | \& 3

\hline
\end{tabular}

Total for Question 1 = 10 marks

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
reduce the kinetic energy of neutrons; \\
to absorb (high energy) neutrons; \\
use of (concrete / lead) shielding; \\
idea that contamination is when a non-radioactive object comes into contact with a radioactive material; idea that irradiation is when radiation is present;
\end{tabular} \& \begin{tabular}{l}
allow 'slow down' neutrons \\
allow absorb / reduce strength of neutron radiation condone "stop neutrons escaping" \\
allow "concrete walls" \\
Condone idea of exposure for 1 mark if no other mark scored
\end{tabular} \& 1

2

\hline | (b) |
| :--- |
| (i) |
| (ii) |
| (iii) | \& | any two from: |
| :--- |
| MP1. creation of a (large) nucleus from small nuclei; |
| MP2. resulting in a loss of mass; |
| MP3. and the release of energy; |
| (in) $\operatorname{star}(\mathrm{s})$; |
| any three from: |
| MP1. high temperature required; |
| MP2. to increase kinetic energy of nuclei; |
| MP3. high pressure required; |
| MP4. (because) nuclei need to be close enough to collide; |
| MP5. (since) nuclei repel each other; | \& | condone "fusing of two nuclei" |
| :--- |
| accept reference to $\mathrm{E}=\mathrm{mc}^{2}$ |
| condone "converted to energy" |
| allow named star e.g. The Sun |
| allow to make nuclei move faster allow particles or atoms for this MP |
| allow higher level answers in terms of short range strong nuclear force | \& 2

1
3

\hline
\end{tabular}

Question number	Answer	Notes	Marks
3 (a)	(nuclei with) the same number of protons; (but) different number of neutrons;	allow same atomic number / same element allow different nucleon / mass number / atomic mass	2
(b)	A (82); B is incorrect because this is the number of neutro C is incorrect because this is the number of nucleo D is incorrect because this is double the proton nu	+ nucleon number	1
(c) (i) (ii)	evidence of 3 half-lives; correct evaluation; $\begin{aligned} & \text { e.g. } \\ & 240 \div 2^{3}=30 \\ & 66 \div 3=22 \text { (years) } \end{aligned}$ correct atomic and mass numbers used for alpha particle; correct evaluation of number of beta particles; e.g. at omic number of alpha $=2$, mass number $=4$ (therefore) 2 beta decays (to get back to 82)	seen anywhere in working seen anywhere in working	2 2

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
\[
4 \text { (a) (i) }
\] \\
(ii)
\end{tabular} \& \begin{tabular}{l}
by radiation / by (infrared) light; \\
(average speed) increases;
\end{tabular} \& \begin{tabular}{l}
ignore "heat" \\
Allow EM waves/ IR, condone visible, UV, sunlight \\
condone "light rays" e.g. "faster"
\end{tabular} \& 1
1 \\
\hline \begin{tabular}{l}
(b) \\
(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
Ether \\
idea that water temperature is greater than the outside temperature; \\
Or not receiving radiation / light from the Sun; any four from: \\
MP1. cover traps air; \\
MP2. (trapped) air is a poor conductor / (good) insulator; \\
MP3. plastic is a poor conductor / (good) insulator; \\
MP4. conduction reduced; \\
MP5. convection reduced / stopped; \\
MP6. less evaporation (from water surface);
\end{tabular} \& \begin{tabular}{l}
allow RA \\
condone 'heat' or 'sunlight' for 'light' or 'radiation' \\
ignore reference to radiation ignore 'traps heat' \\
condone " conduction stopped" \\
condone " no evaporation"
\end{tabular} \& 1

4

\hline
\end{tabular}

Total for Question 4 = 7 marks

| (d) | voltage stays the same;
 (because) each putty cylinder is connected in
 parallel (with the cells);
 total current doubles;
 (because) current in each putty cylinder stays the
 same (as before) and these currents add together; | allow resistors in
 parallel have lower
 total resistance
 allow correct use of
 resistors in parallel
 formula | allow current increases |
| :--- | :--- | :--- | :--- |\quad| |
| :--- |

Total for Question 5 = 17 marks

Question number	Answer	Notes	Marks
6 (a) (i) (ii)	```density = mass / volume; substitution OR rearrangement; evaluation; e.g. V=m/\rho OR 2.3=19/V (V =) 8.3(cm}\mp@subsup{)}{}{3```	allow rearrangements and use of symbols e.g. $\mathrm{V}=\mathrm{m} / \rho$ or $\mathrm{D}=\mathrm{M} \mathrm{V}$ allow 8.26...	1 2
(ii)	$\text { pressure difference }=\text { height } \times \text { density } \times \mathrm{g} \text {; }$ substitution; evaluation; e.g. $\begin{aligned} & (\mathrm{p}=5.6 \times 1000 \times 10 \\ & (\mathrm{p}=56000(\mathrm{~Pa}) \end{aligned}$	allow use of standard symbols e.g. $\mathrm{p}=\mathrm{h} \times \rho \times \mathrm{g}$ reject 'gravity' accept use of $g=9.8(1)$ $\mathrm{m} / \mathrm{s}^{2}$ -1 if POT error in substitution Use of 9.8 gives 54880 Use of 9.81 gives 54936 Both round to 55000	1 2

Total for Question $6=6$ marks

Question number	Answer	Notes	Marks
7 (a)	measuring equipment: MP1. ruler / tape measure; MP2. stopclock / stopwatch; variables: MP3. surface material is the independent variable; MP4. (average) speed is the dependent variable; MP5. any one control variable from; - size / mass / material / area / weight of block - height/ angle/ gradient of ramp - initial force given to block - distance travelled down the ramp determining average speed: MP6. use of (average) speed $=$ distance travelled / time	allow if clearly included in diagram condone 'timer' accept use of light gates if connected to timing device e.g. computer/ dat al ogger accept 'camera' if subsequent method describes 'freezeframe'/timestamp technique allow time as the dependent variable allow 'keep constant' for 'control variable' allow 'push' given to block allow initial speed or velocity allow same starting point and finishing point accept use of light gate if description includes length of card/ block and time of transit	6
(b)	(bar chart because) surface material is a \{categoric / discontinuous/ non-continuous\} variable;	condone surface material being a discrete variable	1

Question number	Answer	Notes	Marks
8 (a) (i) (ii)	D-(weight and air resistance are equal); A, B and C cannot be correct because accelerations, forces and velocities are not the same SI quantities. $\mathrm{C}-(2300 \mathrm{~m}) ;$ A cannot be correct because each large square represents 200 m and the area is larger than one large square. B cannot be correct because the area is larger than 6.5 large squares D cannot be correct because the area is lower than 12.5 large squares		1 1
(b)	any four from: MP1. air resist ance increases (greatly) when parachute is opened; MP2. idea that air resistance is greater than the weight; MP3. (therefore) deceleration / upwards acceleration; MP4. idea that air resistance decreases with speed; MP5. resultant force (eventually) becomes zero; MP6. constant speed achieved	allow "drag" for air resist ance throughout allow "upwards force" allow upwards force is bigger than downwards force allow idea of upwards resultant force ignore " velocity decreases" allow "forces are balanced again" allow air resistance = weight allow idea that there is no acceleration	4
(c)	D-(thermal store); A cannot be correct as there is no mechanism for this transfer B cannot be correct as the gravitational store is decreasing C cannot be correct as the jumper is at constant velocity		1

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
9 (a) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
light ray refracting and bending in the correct direction; \\
wavefronts in water drawn closer together by eye; wavefronts drawn in water join up with wavefronts in air; \\
wavelength decreases; (because) wave speed decreases and frequency remains constant;
\end{tabular} \& \begin{tabular}{l}
ignore any response in the air e.g. reflected wavefronts or direction of travel of reflected ray \\
allow wherever seen in diagram
\end{tabular} \& 3

2

\hline | (b) (i) |
| :--- |
| (ii) |
| (iii) |
| (iv) | \& | normal drawn at right angles where light ray meets boundary; |
| :--- |
| 55°; |
| substitution into $\sin c=1 / n$; |
| rearrangement; |
| evaluation; |
| e.g. |
| $\sin c=1 / 1.6$ |
| ($\mathrm{c}=\sin ^{-1}(1 / 1.6)$ |
| ($\mathrm{c}=$) 39° |
| (path shows) total internal reflection; |
| (because) ray is travelling from high to low refractive index; |
| (and) angle of incidence is greater than the critical angle; | \& | judge by eye |
| :--- |
| allow range $54-56^{\circ}$ |
| condone intermediate rounding |
| allow 38.682... |
| allow TIR |
| however expressed e.g. reduction of (optical) density / increase in speed from glass to air | \& 1

1
3

3

\hline
\end{tabular}

(c)	```calculation of new acceleration (5.6); substitution into a = (v-u)/t; rearrangement; evaluation; e.g. new acceleration =5.6(m/ s 5.6 = 18/ t (t =) 18/5.6 (t =) 3.2(s)```	-1 if POT error allow ecf from acceleration value allow use of previously calculated acceleration award full marks for momentum method i.e. recall of $F=(m v-m u) / t$; substitution; rearrangement; evaluation; allow 3.214... ignore negative reject $25000 / 14000 \times 18$ (i.e. mass $\times 10 x$ speed/force) which gives 32.	4

Question number	Answer	Notes	Marks
11 (a)	MP1. method to show shape; e.g. use compass(es) use of iron filings/ powder MP2. use of plotting compass to show direction; MP3. a further method detail; e.g. move compass / multiple compasses in different positions idea of another line or lines added sprinkle iron filings (on to card) tap card (to distribute iron filings)	all marks may be given from diagram	3
(b) (i) (ii)	both arrows correctly pointing from north to south; idea that field lines are closer together / further apart; (showing that) field strongest near the poles / weaker away from the poles;	reject if arrows contradict allow "magnet" for "poles"	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
(c)	any pair of readings read from the graph; correct substitution into formula to find constant ; different pair of readings used correctly to find constant; statement that the results agree with the conclusion; e.g. when distance $=30 \mathrm{~mm}$, magnetic field strength $=$ 2.3 mT $\left(2.3 \times 30^{2}=\right) 2070$ $\left(0.8 \times 50^{2} \Rightarrow 2000\right.$ const ants are approximately the same so results agree with conclusion	DOP allow idea that the const ants are different so the results do not agree with the conclusion	4

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

